Table of Contents – A Number Consists of Two Digits | Solution | Problem Solved
- A number consists of two digits.
- The sum of the digits is 9.
- If 63 is subtracted from the number.
- Its digits are interchanged.
- The number can be figure out in this way.
Important Points to Solve the Problem
Let the unit digit is z and ten’s digit is y. So, number becomes “10y + z”. The sum of the digits is given.
y + z = 9 ________ (i)
When 63 is subtracted then the unit digit becomes ten’s digit and ten’s digit becomes a unit digit.
10y + z – 63 = 10z + y ________ (ii)
Solving (i) and (ii) simultaneously we can easily figure out the required number.
To Find
Number = ?
Solution
Let Suppose
Unit digit = z
Ten’s digit = y
Number = 10y + z
According to the first condition of the question
y + z = 9 ________ (i)
According to the second condition of the question
10y + z – 63 = 10z + y
10y – y + z – 10z = 63
9y – 9z = 63
y – z = 7 ________ (ii)
By adding (i) and (ii)
y + y + z – z = 9 + 7
2y = 16
y = 8
putting in equation (i)
8 + z = 9
z = 9 – 8
z = 1
Number = 10y + z = 80 + 1 = 81 answer
Conclusion
A number consists of two digits. The sum of the digits is 9. If 63 is subtracted from the number, its digits are interchanged. The number would be 81.
To read more about the Number Theory: Please Click Here
It’s very helpful for the preparation of exams I recommend you must visit here if you want a detailed answer
Thank you very much.